By Dietmar Aust, Opal-Consulting

)

THE PROBLEM

Producing print ready reports (in PDF or MS Word for-
mat) is a common requirement in most applications. More of-
ten than not you have to deal with somewhat more complex
requirements, formatting of data, grouping, calculating totals
and subtotals, conditional showing and hiding of information,
and integration of images or matrix (pivot) queries. Typical
use cases are financial reports, invoices, sales orders, or tax
forms. See Figure 1 as an example.

] RFAL

[Angebot vom 08.09.2009

Angebot Kunde
Angebot Nr.: 50016/1 Kundennr.: 2568
Status: Angebot gedruckt Kunde: AGK Hochleistungswerkstoff
Erstellt: 01.03.2008(DENES KUBICEK) Strasse: Groz-Beckert-Strale 4
Aktualisiert: 06.03.2008(DENES KUBICEK) PLZ / Ort: 78584 / Wehingen

) |

\ NI Artikel Anzahl Preis Rabatt [%] S]
1 Deutsche Kiche 21 €1395 34,00 €193,35
2 Osterreichiche Kiiche Z €1399 10,00 €25,18
3 PL/SQL 1 €1979 22,00 €1544
4 PL/sQL 3 2990 0,00 €89,97
5 Rusische Literatur 5 €1295 12,00 €56,98
6 Franzésische Kiiche 1 €259.99 0,00 €259,99

Gesamtsumme: €640,91

Figure 1: Sample report

Print capabilities have been added to Oracle Applica-
tion Express (APEX) in version 3.0. The basic functionality is
provided by the integration with the cost-free Apache FOP
library.

In this simple integration, the report definition has to be
specified by writing a XSLT transformation without any GUI
support. This is a quite cumbersome and error-prone process.
In order to create more advanced and complex reports, you
would have to buy a license of Oracle’s Bl Publisher. Since
this is a very expensive option, many Oracle shops are [ook-
ing for cheaper alternatives for their printing needs.

YOUR OPTIONS

Several different approaches to producing print quality
reports with APEX are possible. First we will cover some of the
most popular options, and then focus on a very specific inte-
gration with the popular Java reporting engine Jasper Reports.

Apache FOP

For the basic APEX printing support, you can use the
Apache FOP library (or any other XSL-FO compatible library).
The report definition has to be specified as an XSL transforma-
tion. The only available output format is PDF.
The basic printing support is really easy to use. You can en-
able it on any report region declaratively.

28 | First Quarter 2010 | ODTUG Technical Journal

Printing

Enable Report Printing
Link Label |Drucken
Response Header
view File As [Attachment [s]
Output Format

Figure 2: Enable printing on a report region

You can choose a generic layout or a custom layout (with
named columns), and also specify some basic print attributes
declaratively like a custom header or footer, the columns to
be included, as well as their corresponding widths, fonts,
colors, etc.

Using the generic layout, which is easy to use out of the
box, you can only create really simplistic reports, see Figure 3.

Deptno Dname Loc
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Figure 3: Sample report output

Once your report gets just slightly more complex, you
would have to create a custom layout and program it using
the XSL syntax without any support through a graphical user
interface. This is really hard to do.

Apache Cocoon

Carl Backstrom from the APEX development team
published another option based on the Apache Cocoon
framework. It does the same as the Apache FOP solution but
adds RTF support in addition to PDF:

http://carlback.blogspot.com/2007/03/apex-cocoon-pdf-and-
more.html

Robert Stefanov extended Carl’s solution even further by
adding support for XLS, XML, and HTML as well:

http://rste.blogspot.com/2008/07 /excel-export-from-apex-
cocoon.html

Oracle Bl Publisher
For your more advanced printing needs, Oracle suggests
its Oracle Bl Publisher.

The most notable distinction is its capability to design
the report layouts within MS Word. It ships with plug-ins to
integrate APEX session variables and report queries into your
MS Word document via drag-&-drop. Once you are done with
the report design, you can upload the report definition file to
the APEX repository. This uploaded report layout can then be
selected when defining the print properties on a report region.

Also, you can call the report via a special URL syntax
anywhere in your application.

Code Solutions, e.g. PL/PDF

Another well known strategy for producing PDF reports
is to program it with lower level functions, PL/PDF being the
most popular option.

This framework is written completely in PL/SQL. It is
fast and works really well. Nevertheless | shy away from
programming reports manually. The complexity is usually
growing pretty fast. You need many lines of code for a typi-
cal layout, and you intermingle the business logic with the
layout. This quickly becomes hard to maintain.

URL-based Approaches

Also, you can easily integrate any kind of reporting
engine which provides a URL interface for invoking the
report.

For example, for this approach you could use Oracle
Reports, Crystal Reports, the Eclipse BIRT project, or Jasper
Reports. The URL to call the report, including the required
parameters, can easily be included or generated on any page
in your APEX application. The report will be invoked with a
simple hyperlink having syntax similar to this example:

http://<server>/<gateway>?r=<reportName>&p=<parameters>
&f=<reportFormat>&ds=<data source or connect information>

Unfortunately, this approach will quickly raise security
concerns. When the user communicates directly to the report
server, you will have to make sure that the report server does
some sort of authentication (who is the user invoking the
report) and authorization (is this user allowed to access this
report) checking. This would require you to build non-trivial
security integration between the APEX application and the
report server. Also, you would need to keep the authentica-
tion and authorization possibly in two separate locations.

Java / extproc

Another option is to load Java-based reporting engines
directly into the database, and provide a PL/SQL-based inter-
face to your applications.

It is also possible to integrate with other reporting librar-
ies on your operating system with the EXTPROC mechanism
provided by the Oracle listener.

JASPER REPORTS

JasperReports (http://www.jasperforge.org/jasperreports)
is one of the world’s most popular open source reporting
engines. It is entirely written in Java, and it is able to use data
coming from any kind of data source and produce pixel-per-

fect documents that can be viewed, printed, or exported in
a variety of document formats including HTML, PDF, Excel,
OpenOffice, and Word.

Ultimately, it is only a Java library that can be embedded
into your own Java applications. Thus you can easily embed the
library into your SWT or SWING client applications, any ap-
plet or J2EE applications, or you call it from the command line
directly or via the ANT build tool. It is really flexible to use.

The report definition files are stored in an XML file (e.g.
report.jrxml). A shortened sample file will look like this:

<?xml version="1.0" encoding="UTF-8"2>
<jasperReport xmlns="http://jasperreports.sourceforge.net/
jasperreports” pageWidth="595" pageHeight="842" colum-
nWidth="555" leftMargin="20" rightMargin="20" topMar-
gin="20" bottomMargin="20">
<queryString language="SQL">
<![CDATA[select * from user_objects]]>
</queryString>
<field name="OBJECT_NAME" class="java.lang.String”>
<fieldDescription><![CDATA[]]></fieldDescription>
</field>
<field name="OBJECT_TYPE” class="java.lang.String”>
<fieldDescription><![CDATA[]]></fieldDescription>
</field>
<title>
<band height="79" splitType="Stretch”>
<staticText>
<reportElement x="216" y="29" width="100"
height="20"/>
<textElement/>
<text><![CDATA[Der erste Bericht]]></text>
</staticText>
</band>
</title>
<detail>
<band height="20" splitType="Stretch”>
<textField>
<reportElement x="0" y="0" width="100"
height="20"/>
<textElement/>
<textFieldExpression class="java.lang.
String”><![CDATA[$F{OBJECT_NAME}]]></textFieldExpres-
sion>
</textField>
</band>
</detail>
</jasperReport>

Once the report definition is specified in this XML file, it
needs to be compiled into a binary file (e.g. report.jasper) in
order to be run by the reporting engine.

When you download JasperReports, you can also down-
load lots of samples of how to use the different features and
the different integration techniques to embed the library into
your own Java applications.

JasperReports supports many different data sources, e.g.
SQL over JDBC, XML files, CSV files, and Java Beans, and
can be extended to implement your specific needs, too.

p

First Quarter 2010 | ODTUG Technical Journal | 29

-
=)
|
-]
=
=
=g
=

L]
=
=
>
-]
m
=<

(panutuoD) * * -

. (Continued)

<
bkl
o
<
<=
=
eo
c
=
[S
‘=
(-
bl
o
o

With one single report definition, you can export the re-
port into multiple formats, e.g. PDF, RTF, or DOCX (MS Word),
XLS (MS Excel), ODF (OpenOffice), or plain text.
JasperReports supports many concepts that are found in profes-
sional reporting environments:

e Report parameters

* Multiple data sources per report

e Local variables, calculations (sum, min, max, ...)

® Matrix reports

e Subreports / modularization

e Conditional formatting (styles)

e Conditional rendering (expressions in Java, Groovy,
JavaScript)

e Fonts, Unicode support

e Sorting, filtering, and grouping

e Diagrams (integration with JFreeCharts)

e National Language Support

* Report triggers

The most notable distinction to the default integration with
Apache FOP or the BI Publisher is the configuration in the J2EE
Server (e.g. Apache Tomcat). In the default integration you have
a J2EE application running in the JEE container which accepts
both the report definition and the data (in XML) in order to pro-
duce the desired output and return the result to the database
and back to the client. No additional setup or configuration is
needed in the J2EE server.

In our use case, we first create a complete report includ-
ing all SQL Statements with iReport (e.g. report.jrxml). Then we
compile the file to a binary (e.g. report.jasper).

This file is then copied to the J2EE server where it can be
accessed by the J2EE application for the integration. This appli-
cation is called JasperReportsintegration, and you can down-
load it from http://www.opal-consulting.de/tools.

This application provides a URL-based interface to invoke
the report against a preconfigured data source (e.g. the Oracle
user HR in the local XE instance). It connects via JDBC to the
database (the connection uses the internal Tomcat connection

iREPORT pool), generates the report in the desired output format, and
iReport (http://www.jasperforge.org/ireport) is another passes the result back to the database.
open source tool to design even complex report layouts for
JasperReports graphically in a WYSIWYG environment. It basi- Apache
mod_plsql

cally creates the XML definition file for you.

ek D Fire
e Uliwtge (oot st Tt
Fewta Essum (Mrearss

ook |
Tommeane (s]romnnbe fjraexat
Epwanas (3]

v T

ek B it
X Der ertteserute -genschatten

HL_L.J.H!JLL.J“H.EQE

K 3
s
i
et
T
E
a8
o

Figure 4: iReport (Version 3.6.0)

It provides an integrated support for different query lan-
guages like SQL, HQL, xPatch, EJBQL, and MDX. Furthermore,
user-defined extensions are supported so that even PL/SQL can
be used as a data source.

iReport offers a full IDE (integrated development environ-
ment) to visually design reports, connect live to the different
data sources, and display a report preview in the different
output formats like PDF, HTML, XML, RTF, or Excel.

It is a modern GUI and provides many features to manipulate
the layout (alignment, sizing) of individual elements or of a
group of elements.

You can download the iReport application here:
http://www.jasperforge.org/ireport.

INTEGRATION AND ARCHITECTURE
How can we integrate these reports into our APEX applica-
tions?

&

g4
Eﬁ@ é@ ®

J2EE/ Tomcat
Report
Definition file

Figure 5: Architecture of the integration

Thus we have the following flow of events:

1. First the user clicks on a link or a button to generate the
PDF report.

2. Within your APEX application you know the user (since he
is authenticated to the application), and you can validate
whether he is authorized to start the report with the sup-
plied parameters.

Subsequently, the URL for the JasperReportsintegration ap-
plication is constructed by the PL/SQL package XLIB_JAS-
PERREPORTS which defines a simple interface to call the
reports which are stored on the server. Via UTL_HTTP the
report is invoked, and the result is returned to the user.

3. Within the J2EE application JasperReportsintegration, a new
database session is generated from a JNDI data source which
is configured in the J2EE server and optimized for perfor-
mance. Usually it is taken from the internal connection pool.
Then the report is run by calling the embedded Jasper
Reports library internally, and returning the result back to

the database and then to the client.
Using the database as a proxy in our architecture has some
advantages:
¢ Only a single tcp/ip port is needed for your APEX applica-
tion and the reporting server.

o)

30 | First Quarter 2010 | ODTUG Technical Journal

e The authorization checking has not been duplicated, it is
sufficient to only check it within your APEX application.

o If the local J2EE server is only accessible by the database,
and all external access is denied, then no additional
setup for SSL or other security measures are needed. You
can use a firewall to protect your J2EE server.

 The complexity of the overall solution is reduced to a
single URL-based interface.

DOWNLOAD AND INSTALLATION

The package can be downloaded here: http://www.opal-
consulting.de/tools/jasper_integration.

Follow the instructions on the site to install the integra-
tion toolkit.

Then we enter the connect information in the appropriate
fields, in our demo the Oracle user HR in our local XE instance.

NAME: hr@xe

JDBC DRIVER: Oracle (oracle.jdbc.driver.OracleDriver)
JDBC URL: jdbc:oracle:thin:@localhost:1521:XE
USERNAME: hr

PASSWORD: <password for hr>

Home News Jasper Reports Integration ~ Downloads License Registration Imprint

Home » Jaspe
Navigation

= Home i About the integration (Version 0.8.0.1)

Nes The main purpose is to provide a cost free altemat
» Jasper Reports 50, nave built an integration kitto easily run
Integration

high-idelity printing / PDF generation with
s within your Oracle APE

le APEX. For doing

The Jasper Reports Integration s based on the presentation | have already blogged about In this presentation you will ind
+ Instaliation the details about the architecture and the integration.
« Integration and Usage Onthis

APEX projects:

the all the required rk and use itin your own Oracle
« Examples

« FAQ

« Changelog

« Links
= Downloads
= License

B How does it work?
« Registration

Forthe integration | Open Jasper Reports (basically a java library) to run reports
« Imprint against an Oracle database to produce reports in various formats like PDF, RTF and XLS.

“This integration approach focuses on

URL-based approach, it can easily be extended to call any other
funning reports, for example Oracle Reports, BIRT or Crystal Reports.

Jasper Reports, but is notlimited to it Using a generic
provides a URL

Figure 6: Download of the Package

g D JDBC con

Name]hr@xe I

JDBC Driver 'Oracle (oracle.jdbc.driver.OracleDriver)
JDBC URL lidbc:macle:thin:@loca)host:1521:)(E ‘
JDBC URL Wizard

Server Address I

Database |

:::

ATTENTION! Passwords are stored in clear text. If you dont
/\, specify a password now, iReport will ask you for one only
when required and will not save it.

Test “ Save ” Cancel I

Figure 8: Configure the data source

There you will also find additional examples on how to
use the integration.

THE FIRST REPORT

Let’s start with our first report. We will go through a
complete example from start to finish, and even integrate the
report into the default sample application that is shipped with
APEX. The sample application can be installed in any APEX
workspace through the wizards, and is already preinstalled in
most workspaces (unless you manually suppress it).

Creating the Report
First we start the iReport designer to create the first report.
In this example, I will refer to version 3.6.0.

Configure the Data Source

In order to design a report, we need to configure a data
source to base the report on.

In our example, we will connect as the Oracle user HR to
our local XE instance.

First we click on the symbol in Figure 7 to manage the
data sources.

Create the Report

Once the data source is configured, we can start by creat-
ing the first report. After invoking File > New you will see the
dialog to create a new report. There you can choose to use
a predefined report template; you can even create your own
templates for your company. In this demo, we start with the
blank one by clicking on “Launch Report Wizard.”

: P —
B\ ‘Selact 2 Starting pant for Your r2port or choose the WIsld to guide you.
ol
e
TR
149
R
M
I — =
T B un
5 o rm—

Figure 9: Choose a report template

P v

‘ x ‘ . o @ Em|:nr.v datasource 3
Report Datasources

Welcome Window x |

Figure 7: Manage the data sources.

Then we click on New to create a new data source. We
choose JDBC as the data source type.

After that we specify the name and location. The report
name will be customer so that the resulting file will be named
customer.jrxml. (See Figure 10, next page.)

Next we choose the newly created data source hr@xe
and enter the sql query: select * from demo_customers.

(See Figure 11, next page.)

Finally, we select the columns we want to use in the
report, and accept the default values on the remaining dia-
logues.

First Quarter 2010 | ODTUG Technical Journal | 31

o,

(@

-
)
|
-]
=
=
=g
=

L]
=
=
>
-]
m
=<
=
Q)
Q
=
=
g
a
=
N—

—~
=
=
=
B
=
S
Q
~
>
bk
=1
<
=
=
o0
=
—
c
‘=
o
ke
a
a.

Steps Name and location

1. Choose Template

2. Name and location Report name: Icuﬂamer |
- tocaons (el] [irome]
4. Fields :

5. Group by. File: |e:\e jraeml |
6. Finish

[siacce] [deca]| Frsn | [acancel]| op |

(% Neve X

Steps Query

1. Choose Template

2. Name and location [Data So

3. Query [rrexe o] [catien

4 Fields

5. Groupby... Query (SQL)

6. Finish select * from demo_customers| EJ
(e | e T | e

PLACING THE FIELDS ON THE REPORT

Next we want to place the report fields on the report
itself. In our demo, we want to show the customer details for
a selected customer.

On the left side of the IDE we see the pane called Report
Inspector. There we open the node called Fields, and then we
drag the individual elements onto the report where we place
them in the Title band; it is the topmost report band.

Then we create labels for each report field. On the right
side in the IDE, you can see the pane Palette. We click on the
element Static Text and drag it onto the report, too. Once we
are done the report should look like Figure 12.

Marname $F{CUST_FIRST_NAME}

Name $F{CUST_LAST_NAME}

Adresse $F{CUST_STREET_ADDRESS1}
$F{CUST_STREET_ADDRESS2}
PLZ/Ort $F $F{CUST_CITY}

We can see a preview of the report when we click on the
Preview button.

| welcome windon._= | lcndcrimminsl
Desgner XML [Previen | @ H G 1 4 » DEM@ afex E ™

Vomame John

Name Dulles

Adresse 45020 Aviation Drive
PLZ!/ Ort 20166 Sterling

Filter for a Specific Customer

We don’t want to display ALL customers; therefore we
need to add a filter to the report. First we create a parameter
called p_customer_id by right-clicking on the Parameters
node in the Report Inspector pane.

We have to specify all parameters as java.lang.String due
to the implementation of the J2EE application. We cannot use
any other data type.

Name p_customer_id
Parameter Class java.lang.5tring
Use as a prompt

Default Value Expression| 1

Description

Properties Mo properties set

Next we modify the sql query to incorporate the param-
eter as a filter.

Welcome Window x | Ll kunde.jrml x|
Designer ML Preview @ Q a IE " Abaddon™ ~ IS v |n n |
- 1 2 = B & 7 8 10

9

The modified query is:

select * from demo_customers where customer_id = $P{p_cus-
tomer_id}

Deploying the Report

Now we have created our first report called customer.
jrxml. This is the report definition in XML format. Next we
need to compile the report to a binary by clicking on Compile
Report as seen in Figure 16.

Welcome Window x | ail, kunde.jrxml x| L]EE

L Preview IG @ Q T SansSerif

Designer

> 4 3 | 10 e e
O TSR N[Y | O | S ' Compile Report

* J 32 | First Quarter 2010 | ODTUG Technical Journal

This will create the file customer.jasper in the same direc-
tory as the file customer.jrxml.

This file customer.jasper needs to be copied into the
directory % CATALINA_HOME % \webapps|jasperReportsin-
tegration\reports. There you will also find the file test.jasper.

On the Web page http://127.0.0.1:8080/JasperReports-
Integration/ you can now test the report by entering customer
as the value for the parameter _repName. The resulting URL
will be similar to:

http://127.0.0.1:8080/JasperReportsintegration/
report?_repName=customer&_repFormat=pdf&_
dataSource=default&_outfilename=&_replocale=&_repEnc-
oding=

Integration into Your APEX Application

In order to demonstrate the integration, we extend the
demo application which is installed into all APEX workspaces
by default.

In the next section we create a new button called PRINT
in the region Add/Modify Customers as seen in Figure 17.

Create Button

Cancel < Previous, Next >

Page: 7 - Add/Modify Customers
Region: Add/Modify Customers
* Button Name | PRINT |
[Cance] [Nex] [Previous] [Apply] [Submi] [Deete] [Finish] [Create]
* LabeI[P”m ‘
Button Type: & HTML Button
O Image
Q Template Driven
[Bution is Reset

Action: (& submit Page and Redirect to URL
© Redirect to URL without submitting page

Figure 17: Create a print button

We create a condition Value of item in Expression 1 is not
null with the value P7_CUSTOMER_ID in Expression 1.

Sample Application

ADMIN Print Logout

Home » Customers > Add/Modify Customers

Add/Modify Customers
cencal] [Bgeie) [oonchanges.] Lot

= First Name [William]

+ Last Name [Hartsfield]

Sireet Address |6000 North Terminal Parkway
‘ Street Address 2

Figure 18: Final button layout

Next we create a process to show the report. We need
a page process of type On Submit — After Computations and
Validations.

This page process should be linked to the button PRINT,
thus we need to specify the When Button Pressed attribute on
the process accordingly.

In order to show the PDF report in the current window,
we use the following PL/SQL source code:

BEGIN
xlib_jasperreports.set_report_url(
p_report_url => G_REPORT_URL);

xlib_jasperreports.show_report (
p_rep_name =>‘customer’,
p_rep_format => ‘pdf’,
p_data_source => ‘default’,
p_out_filename => null,
p_additional_params => ‘p_customer_id="'
|| :p7_customer_id);

-- stop rendering of the current APEX page
apex_application.g_unrecoverable_error := TRUE;
END;

This approach implies that the variable G_REPORT_URL
is set to the value http://127.0.0.1:8080/JasperReportsin-
tegration/report either in the global application attributes
(see section Substitutions on the page Shared Components >
Defintion) or in an application item. When using an applica-
tion item please make sure to to set the attribute Session State
Protection to Restricted — May not be set from browser. You
can also store the value in a local configuration table in your
schema; this is up to you.

By specifying a value for the parameter p_out_filename
the browser’s default save dialogue is invoked. The report is
no longer displayed online on the current page, but the user
can save or open the report with an external program.

Our PL/SQL block would look like this:

BEGIN
xlib_jasperreports.set_report_url(
p_report_url => G_REPORT_URL);

xlib_jasperreports.show_report (

p_rep_name => ‘customer’,
p_rep_format => ‘pdf’,
p_data_source => ‘default’,
p_out_filename => ‘customer’

|| :p7_customer_id

| “pd,
p_additional_params => ‘p_customer_id='

|| :p7_customer_id);

-- stop rendering of the current APEX page
apex_application.g_unrecoverable_error := TRUE;

’

Additional Examples on the Web site

You can find more examples on the Web site http://
www.opal-consulting.de/tools/jasper_integration, especially
how to store a generated report as a blob in a table, or how to
send the report as an e-mail attachment using apex_mail.

First Quarter 2010 | ODTUG Technical Journal | 33

-
=)
|
-]
=
=
=g
=

L]
=
=
>
-]
m
=<
=
Q)
Q
=
=
g
a
=
N—

CONCLUSION

provides a URL-based interface to invoke the reports.
By using the database as a proxy (via UTL_HTTP), we can
easily create a secure solution (authentication and authoriza-
tion) without much hassle.

Focusing on JasperReports, one of the world’s most

% There are many different approaches to produce print

z ready reports in APEX in addition to the out-of-the-box

-‘é‘ integrations—Apache FOP and Oracle BI Publisher. D |Oliade t
5 Basically we can integrate any kind of reporting engine that evelopmen

—[os

7
About The Author

popular open source Java reporting engines, we have a re- Dietmar Aust is working as a freelance consultant in
ally cheap and powerful alternative to satisfy even complex Germany, focusing on Oracle Application Express and
reporting needs. Oracle XE. Starting in 1997, he worked for three years

as a consultant for Oracle in Germany. Since then, he
helped numerous leading companies in Germany to
successfully deliver Web-based applications based on
the Oracle product stack, especially the Internet appli-

For designing your reports, the iReport designer is a per-
fect fit. Both tools are open source.
In this article, we have shown a complete example from

=<
e
a
<
e
=
e0
=
£
=
‘=
a
el
o
o=

start to finish on how to design a new report, deploy it on the cation server - Oracle Portal and Reports. He is a regular

application server, and integrate it into the application. presenter at various Oracle conferences (ODTUG,

You can download the integration here: http://www.opal- OOW, DOAG), conducts training classes on APEX, and

consulting.de/tools/jasper_integration. 329 recently co-authored a book on APEX best practices in
ooe Cerman (“Oracle APEX und Oracle XE in der Praxis”).

You can reach him at http://www.opal-consulting,
http://daust.blogspot.com, or via e-mail at dietmar.
aust@opal-consulting.de.

ODTUG KALEIDOSCOPE VOLUNTEERS GO BACKTO SCHOOL

Be a part of an ODTUG tradition of giving back to the community that hosts the ODTUG Kaleidoscope
Conference. In 2008, we painted an elementary school in New Orleans. Last year we rehabilitated preserved
coastal habitat in the Monterey, California area. This year in Washington, D.C., (Saturday, June 26), we are going
back to school.

Under the guidance of Greater DC Cares (GDCC), ODTUGgers will give five hours of their day to beautify
a school in Washington, D.C. When you register for ODTUG Kaleidoscope 2010, be sure to indicate that you are
interested in participating in the Community Service Day.

ODTUG COMMUNITY SERVICE DAY SPONSORSHIP
Greater DC Cares depends on generous individuals and community-minded companies to fund its pro-
grams, including the ODTUG Kaleidoscope 2010 Community Service Day. Program leaders are needed to
organize the project; food is needed to keep our volunteers energized; paint and other supplies must be purchased;
and transportation costs need to be covered.
Companies or individuals donating more than $100 will have their names placed on the back of the

official ODTUG Community Service T-Shirt.

How do | donate?
To become an ODTUG Community Service Sponsor, please send a check (memo line of your check
should read - June 26 ODTUG Event) made out to Greater DC Cares to:
Greater DC Cares c/o Gregory Hill
1156 15th Street, NW Suite 840, Washington, DC 20005

Please know that Greater DC Cares and ODTUG value your financial support, as well as the donations of
your time, energy, skills, and enthusiasm.

You are truly helping to impact our hosting community - Washington, D.C.!

() 34 | First Quarter 2010 | ODTUG Technical Journal

