
APEX Application Lifecycles
|> Managing the Change

Dietmar Aust
Opal-Consulting, Germany / Cologne
www.opal-consulting.de

Version 1.1 / 28.10.2010 / D. Aust

Introducing Opal Consulting

 Building Oracle based Web Applications since 1997

 Portal, Forms, Reports, OWA Toolkit, now APEX!

 Dipl.-Inform. Dietmar Aust, Freelance Consultant

 Master's Degree in Computer Science (MSCS)

 1997-2000: Consultant at Oracle Germany

 Since 09/2000: Freelance Consultant

 Blog: http://daust.blogspot.com/

 Regular presenter at ODTUG, DOAG

http://daust.blogspot.com/
http://daust.blogspot.com/

Introducing Opal Consulting

Website (www.opal-consulting.de) built on APEX
and Oracle XE as a proof of concept

http://www.opal-consulting.de/
http://www.opal-consulting.de/
http://www.opal-consulting.de/

Introducing Opal Consulting

 Giving APEX trainings regularly in Germany together with
Denes Kubicek

 Co-authored a book in German on APEX and Oracle XE
best practices

 http://apex-xe-praxis.de/

http://apex-xe-praxis.de
http://apex-xe-praxis.de
http://apex-xe-praxis.de
http://apex-xe-praxis.de
http://apex-xe-praxis.de

Why are you here?

 This topic is NOT SEXY, NOT COOL

 You don‟t get any FREE BEER ;)

 Why are you here?

 It saves TIME, MONEY … and your NERVES

 It increases the quality of your software

 It increases the maintainability and transparency of your
software

 Please spend more time with your family ;)

Why are you here?

 Everybody needs an Application Lifecycle Management
(ALM) but nobody takes the time ... the costs are high ...
and well hidden ;)

 A good ALM / configuration management takes a lot of effort !=
trivial!

Why are you here?

 No standards in the Oracle world, the Java world
seems to agree on Maven

 Apache Maven is a software project management and
comprehension tool. Based on the concept of a project
object model (POM), Maven can manage a project's
build, reporting and documentation from a central piece
of information.

 http://maven.apache.org

 ANT (popular build tool)

 Maven could be seen as (“ant with convention over
configuration”)

Agenda

The background project

Challenges faced

The components of a successful application
lifecycle management (ALM)

Implementation from A-Z with demo

The Background Project

Mainly developed at the German Telecom
Shops for the Shop Management Application
called „Spots“.

Concept evolved over the last three years

Works really well (for us)

Good understanding of the relevant issues

The Background Project

 Complexity
 2-3 Developers

 Development since 05/2007

 Single schema SHDB_200

 Tablespace names identical on dev, test, prod

 200 Tables, 100 Packages, 3000 database objects

 APEX application with 140 pages

 Releases
 Usually four releases per year

 In average 100 (50-250) changed / newly created
objects

 Usually four internal revisions with the test team

Technical Challenges

Concurrently changing database packages

 Overwriting changes

Current state / version unclear

 installation files

 application files: APEX, WAR, JS, CSS

 application version in database instance (dev,
test, production)?

 was script xyz (DDL or DML) already run on
instance test?

Non Technical Challenges

Which requirements were implemented in
this patch?
 => Release Notes!

When did we install which version?
 The problem we have now … could we have

already fixed it?

Keeping up with the documentation
 Delta Release was fine ... complete system spec

was outdated

Non Technical Challenges

Needed answers to the typical PJM related
questions to organize our daily work

At the end of the day the developer is asked
 What is the scope of the release?

• Must / Should / Could / Won‟t

 Who is doing what?

 What are the open issues / questions?

 What did we estimate for each task?

 Are we in time/budget?

 We are running late … why?

The Approach

 => We needed an approach that was

 Simple (only few rules, KISS)

 Transparent (don‟t make me think, the good RTFM error ;)

 Consistent

 Safe (don‟t make more mistakes than necessary ;)

Which “objects” should be considered?
 Files

 Database objects

 APEX objects

 Documentation

 Requirements

The Components Of A Successful ALM

• Little room for
errors

• Database
Objects

• Filesystem

• APEX

• Subversion

• TortoiseSVN

• Scope

• Bugs / Issues

• Budget!

• Timesheets!

Project
Management

(PJM)

Version
Control

Strict Rollout
Procedures

Naming
Conventions

The Components: PJM

PJM application for managing the scope
 Lightweight, as a tool for developers

Relevant features
 Which requirements are included in version xyz?

• Generate a list easily

• We work on the requirements and spec online in the
tool when meeting with the customer

 Budgets, estimations and timesheets integrated

 Milestones

 Open issues, easy to generate a list for the next
meeting with the client

The Components: PJM

Demo:

 Show PJM application
• A tool for developers

• Upcoming milestones

 Requirements
• Subrequirements, estimations, etc.

• Open questions for the next customer meeting

• Implemented features in Revision 1?

 Timesheets
• Unplanned activities

• Timesheet export for the customer

The Components: Version Control

• Little room for
errors

• Database
Objects

• Filesystem

• APEX

• Subversion

• TortoiseSVN

• Scope

• Bugs / Issues

Project
Management

(PJM)

Version
Control

Strict Rollout
Procedures

Naming
Conventions

The Components: Version Control

Subversion + TortoiseSVN
 http://tortoisesvn.net

 Integration with Windows Explorer

 Icon overlays, context menus

Version control of database objects

 Using the simple checkin/checkout
mechanism in Toad

 Exclusively locking a database
object for modification

The Components: Version Control

All files are under version control

Changing database objects
 Set an exclusive lock

 Modify it directly in the database

 Register the modified objects in the patch script
immediately
• Only for “true” ddl , e.g.: alter table add column

• Empty files for the rest

 Release the lock

 Use subversion to control the filesystem

The Components: Naming Conventions

• Little room for
errors

• Database
Objects

• Filesystem

• APEX

• Subversion

• TortoiseSVN

• Scope

• Bugs / Issues

Project
Management

(PJM)

Version
Control

Strict Rollout
Procedures

Naming
Conventions

The Components: Naming Conventions

Table names in plural

Packages in singular

 CGUD conventions for
functions / procedures
• create, get, update, delete

The Components: Naming Conventions

Other object types have their type appended

 Views: _v

 Materialized views: _mv

 Triggers: _trg

 Primary keys: _pk

 Indexes: _idx

 …

The Components: Naming Conventions

Data type of column can be guessed by its
name

 Boolean: is_valid_number

 Date: created_on, valid_until

 Varchar, i.e. user name: created_by,
updated_by

We don‟t use name columns any more

 Either we mean a (internal and unchangeable)
code or (a possibly to be changed) title

The Components: Naming Conventions

Sample table: FM_BOOKINGS

Prefix notation for columns

 All columns are prefixed with the table short
name / alias

The Components: Naming Conventions

Prefix notation for columns

 Impact on views, APEX page items

 => TRANSPARENCY !!!

 Sample: Edit Page on View
FM_BOOKINGS_RL_V
• A reference to page item P5_ID has

to be explained / documented

• References to P5_BOOK_ID or
P6_USR_ID are transparent and
self-documenting

• No difference between data model
and page items

The Components: Naming Conventions

Use domains for common columns

 i.e. columns containing numbers should always
be called NO

 i.e. columns containing descriptions should
always be called DESC

 Use the same data type and length consistently

The Components: Naming Conventions

Separate packages for UI and business logic

Business packages

 Use automated testing

UI-packages

 Specific logic just for
our APEX applications
• Generate a html link to another page

• Page validations, referencing application state
(v(„P5_ID‟)) or using collections

The Components: Naming Conventions

File system layout - SRC

 Source files
• Organization by source type,

then module or schema

 src
• apex (import into workspace)

– static_file, image, css, plugin

• apex_custom (virtual directory on
the web server)

• sql
– schema1

– schema2

The Components: Naming Conventions

File system layout - PATCH

 Versions:
• Major.Minor.Patch.Revision

– Only communicate the first three

 patch (new software release)
• 1.0.0.0

– apex

– sql/schema1

– sql/schema2

• 1.0.0.1

• 1.0.0.2

The Components: Naming Conventions

File system layout – PATCH_DATA

 patch_data
• (just a DML modification)

 Not formalized yet, but
• All patches are listed and

under version control

• Each execution is
recorded in the database

The Components: Naming Conventions

 Naming conventions for all files
 In most cases: <object_name>.sql (e.g. for table, view,

trigger, foreign key constraint, type, procedure,
function)

 Exception: (packages or types, they have a spec and
body)
• package_name.pks

• package_name.pkb

 All scripts are in lowercase => can be run on Windows
and *nix

 Data manipulations scripts: <table_name>_data.sql
• Insert, Update, Delete

• Insert into FM_BOOKINGS => fm_bookings_data.sql

The Components: Naming Conventions

 Naming conventions for all files
 Easy to find changes:

• When did we manipulate the configuration table?

• dir /s *data.sql

• When did we add the column xyz to table shdb_standorte?

The Components: Naming Conventions

• Little room for
errors

• Database
Objects

• Filesystem

• APEX

• Subversion

• TortoiseSVN

• Scope

• Bugs / Issues

Project
Management

(PJM)

Version
Control

Strict Rollout
Procedures

Naming
Conventions

Rollout from A-Z

Initialize
Patch

Make
Changes

Finalize
the

Patch

Install in
TEST

Update
Docs

Install in
PROD

Multiple iterations for internal testing

Rollout from A-Z: Initialize Patch

Use a template to create the patch directory
(zip file or ANT script)

 Patch 1.0.0.x as a copy of the TEMPLATE
directory

 Change version number in the patch script
_patch.sql

Rollout from A-Z: Initialize Patch

Increase version number in your APEX
application

Rollout from A-Z: Initialize Patch

Reference #APP_VERSION# in the page

template footer

Then it will appear in the application

Rollout from A-Z: Initialize Patch

Demo:

 Create new patch 1.0.0.4
• Change version number

 Modify APEX Application Version
• 1.0.0.4

Rollout from A-Z: Make Changes

Initialize
Patch

Make
Changes

Finalize
the

Patch

Install in
TEST

Update
Docs

Install in
PROD

Multiple iterations for internal testing

Rollout from A-Z: Make Changes

Modify a table using
toad and display the
generated sql

Add the file fm_bookings.sql
to the sql/test directory and
reference it in the _patch.sql

script

Rollout from A-Z: Make Changes

If you modify any other object it only needs
to be registered in the _patch.sql script.

 Package, View, Procedure, Trigger and others
can be completely generated from the database
and copied over the empty files later.

 And create the empty files for that in the
sql/test directory

Rollout from A-Z: Make Changes

The _patch.sql script defines an order

how the objects have to be installed:

 Types, Tables, Foreign keys, Views, Procedures,
Functions, Packages Headers, Packages Bodies,
Trigger, Data (DML) scripts, other scripts

All scripts within a certain section have to be
in alphabetical order (!!!) – helps with
Subversion and things are easier to find

 Show _patch.sql script from Spots

Rollout from A-Z: Make Changes

Experimental DDL
trigger to record
changes

Rollout from A-Z: Initialize Patch

Demo:

 Add column to FM_BOOKINGS
• BOOK_CAN_BE_CANCELED_UNTIL

 Add column to view
FM_BOOKINGS_RL_V

 Change package FM_BOOKING

Rollout from A-Z: Finalize the Patch

Initialize
Patch

Make
Changes

Finalize
the

Patch

Install in
TEST

Update
Docs

Install in
PROD

Multiple iterations for internal testing

Rollout from A-Z: Finalize the Patch

Extract the sources into the filesystem
(again)

 Subversion will highlight (!) the changed files

 Copy them manually into the sql/test

directory

Rollout from A-Z: Finalize the Patch

Export application file with version
 f20100629_alm_demo_v1.0.0.4

Copy all other relevant files (CSS, images,
etc.) to the patch directory

Rollout from A-Z: Initialize Patch

Demo:

 Extract Sources again

 Copy the modified files

Rollout from A-Z: Install in Test

Initialize
Patch

Make
Changes

Finalize
the

Patch

Install in
TEST

Update
Docs

Install
in Prod

Multiple iterations for internal testing

Rollout from A-Z: Install in Test

 Install the patch on the test system

 Set restore point for flashback

• SELECT name FROM v$restore_point;

• create restore point BEFORE_REL_1_0_0_3;

 Install patch

 Flashback database if required

• shutdown immediate;

• startup mount;

• flashback database to restore point BEFORE_REL_1_0_0_3;

• alter database open resetlogs;

 drop restore point BEFORE_REL_1_0_0_3;

Rollout from A-Z: Install in Test

 After testing, reverting and patching again (with
modifications), the script is now complete

 Commit the current state of the directory
src/sql/test_generated to subversion, so you

can see the differences in the next patch

Rollout from A-Z: Update Docs

Initialize
Patch

Make
Changes

Finalize
the

Patch

Install in
TEST

Update
Docs

Install
in Prod

Multiple iterations for internal testing

Rollout from A-Z: Update Docs

 Patch Version will be registered in table xlib_conf_values
as VERSION

 Release history in operation guide or overall release
notes

Rollout from A-Z: Update Docs

 Update central use case document with delta
documentation

 Just copy/paste => no manual integration

 The technical documentation should be generated
completety

 Data model from data dictionary (use table and column
comments!)

 APEX from APEX dictionary

 Database packages with pl/doc

Rollout from A-Z: Install In Prod

Initialize
Patch

Make
Changes

Finalize
the

Patch

Install in
TEST

Update
Docs

Install
in Prod

Multiple iterations for internal testing

Rollout from A-Z: Install In Prod

Export current APEX application

Backup database or set restore point for
flashback

When _patch.sql is run, the application

was set offline

 => only machines with registered IP-adresses
could connect (or when run in the builder
environment)

Rollout from A-Z: Install In Prod

Set the application offline

 Entry in configuration table

 Application process to block users

Internal testing (within the app builder)

After final testing set application online again

Easy to maintain? => Tips!

Each execution of a script must be logged in
the target system

Install scripts => can be run multiple times

Adaptive code

 Dependant on instance type => not different
versions of code on different systems!!!

 Table XLIB_CONF_VALUES has configuration
parameter INSTANCE_TYPE := DEV | TEST |
PROD

Easy to maintain? => Tips!

All things need an order !!!

 Numbering of requirements, use cases, menu
items, sorting in alphabetical order

 => helps with Subversion, automatic merging
of files, easier to look for specific entries

Use Apache rewrites for the end-user URL

Easy to maintain? => Tips!

apex_images

 Don‟t store files there !!!

Use a custom virtual directory instead, e.g.:
apex_custom

Keep the workspace id identical on all
systems

Easy to maintain? => Tips!

Keep the application id identical on all
systems, don‟t use application aliases!!

 Possible problems
• User bookmarks reference to old application id

• Interactive Reports loose the private reports

• Script based deployment not possible in pre 4.0
environment

• In APEX 4.0 you can use APEX_INSTALL to install into a
different workspace, application and parsing schema

• In APEX 4.0 you can fix the interactive report problem
by modifying the offset with APEX_INSTALL

Parallel Development

Working with multiple developers on different
versions of the application

Use cases:

 Hotfix of a production issue

 Parallelizing development efforts

Different than ususal

 Use central repository

 Branching / Merging not advisable => use a
separate application and copy over later

Parallel Development

Hotfix TestDevelopment

Test Production

Easy solution: Use multiple Oracle instances

Further developments

Implementation with Maven 2 / 3

 Add a target for SQL or PL/SQL projects

Automatic generation of documentation

 Data model

 Application metadata from APEX

Automated testing of business logic

Automatic patch installer

Kaleidoscope 2011

Q&A

Contact:
 Opal-Consulting Dietmar Aust

 Web: http://www.opal-consulting.de

 Blog: http://daust.blogspot.com/

 E-Mail: dietmar.aust@opal-consulting.de

Q & A

http://www.opal-consulting.de/
http://www.opal-consulting.de/
http://www.opal-consulting.de/
http://daust.blogspot.com/
mailto:dietmar.aust@opal-consulting.de
mailto:dietmar.aust@opal-consulting.de
mailto:dietmar.aust@opal-consulting.de

